A Parallel Bundle Framework for Asynchronous Subspace Optimization of Nonsmooth Convex Functions

نویسندگان

  • Frank Fischer
  • Christoph Helmberg
چکیده

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between variables is assumed. Instead, dependency information is collected automatically by analysing aggregate subgradient properties required for ensuring convergence. Within this framework three strategies are discussed for supporting varying scenarios of structural independence: a single convex function, the sum of partially separable convex functions, and a scenario tuned to problem decomposition by Lagrangian relaxation of packing type constraints. The theoretical framework presented here generalises a practical method proposed by the authors for Lagrangian relaxation of large scale packing problems and simplifies the analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Structure of Nonsmooth Convex Functions by the Bundle Technique

We consider the problem of minimizing nonsmooth convex functions, defined piecewise by a finite number of functions each of which is either convex quadratic or twice continuously differentiable with positive definite Hessian on the set of interest. This is a particular case of functions with primal-dual gradient structure, a notion closely related to the so-called VU space decomposition: at a g...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

A Bundle Method for a Class of Bilevel Nonsmooth Convex Minimization Problems

We consider the bilevel problem of minimizing a nonsmooth convex function over the set of minimizers of another nonsmooth convex function. Standard convex constrained optimization is a particular case in this framework, corresponding to taking the lower level function as a penalty of the feasible set. We develop an explicit bundle-type algorithm for solving the bilevel problem, where each itera...

متن کامل

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I: Model and Convergence

We propose a novel asynchronous parallel algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchro...

متن کامل

A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

An algorithm is developped for minimizing nonsmooth convex functions. This algortithm extends Elzinga-Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga-Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. As in proximal bundle methods, a quadratic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014